Chapter 1 - Multi Bit Gates

This page continues the first chapter of the Elements of computing Systems creating multi bit gates.

This is the workflow problems of Chapter 1 of the "The Elements of Computing Systems" by Noam Nisan and Shimon Schocken. These are my own solutions for my own reference, The Elements of Computing Systems.

MultiBit Not16

in[16] out[16], for i 0..15 out[i] = Not(in[i])

CHIP Not16 {
    IN in[16];
    OUT out[16];

    Nand(a=in[0], b=in[0], out=out[0]);
    Nand(a=in[1], b=in[1], out=out[1]);
    Nand(a=in[2], b=in[2], out=out[2]);
    Nand(a=in[3], b=in[3], out=out[3]);
    Nand(a=in[4], b=in[4], out=out[4]);
    Nand(a=in[5], b=in[5], out=out[5]);
    Nand(a=in[6], b=in[6], out=out[6]);
    Nand(a=in[7], b=in[7], out=out[7]);
    Nand(a=in[8], b=in[8], out=out[8]);
    Nand(a=in[9], b=in[9], out=out[9]);
    Nand(a=in[10], b=in[10], out=out[10]);
    Nand(a=in[11], b=in[11], out=out[11]);
    Nand(a=in[12], b=in[12], out=out[12]);
    Nand(a=in[13], b=in[13], out=out[13]);
    Nand(a=in[14], b=in[14], out=out[14]);
    Nand(a=in[15], b=in[15], out=out[15]);

MultiBit And16

An n-bit And gate applies the Boolean operation And to every one of the nbit pairs arrayed in its two n-bit input buses. For i = 0...15 out[i]=And(a[i],b[i]).

CHIP And16 {
    IN a[16], b[16];
    OUT out[16];

    And(a=a[0], b=b[0], out=out[0]);
    And(a=a[1], b=b[1], out=out[1]);
    And(a=a[2], b=b[2], out=out[2]);
    And(a=a[3], b=b[3], out=out[3]);
    And(a=a[4], b=b[4], out=out[4]);
    And(a=a[5], b=b[5], out=out[5]);
    And(a=a[6], b=b[6], out=out[6]);
    And(a=a[7], b=b[7], out=out[7]);
    And(a=a[8], b=b[8], out=out[8]);
    And(a=a[9], b=b[9], out=out[9]);
    And(a=a[10], b=b[10], out=out[10]);
    And(a=a[11], b=b[11], out=out[11]);
    And(a=a[12], b=b[12], out=out[12]);
    And(a=a[13], b=b[13], out=out[13]);
    And(a=a[14], b=b[14], out=out[14]);
    And(a=a[15], b=b[15], out=out[15]);

MultiBit-Or Or16

An n-bit Or gate applies the Boolean operation Or to every one of the n bit-pairs arrayed in its two n-bit input buses. For i=0...15 out[i]=Or(a[i],b[i]).

CHIP Or16 {
    IN a[16], b[16];
    OUT out[16];

    Or(a=a[0], b=b[0], out=out[0]);
    Or(a=a[1], b=b[1], out=out[1]);
    Or(a=a[2], b=b[2], out=out[2]);
    Or(a=a[3], b=b[3], out=out[3]);
    Or(a=a[4], b=b[4], out=out[4]);
    Or(a=a[5], b=b[5], out=out[5]);
    Or(a=a[6], b=b[6], out=out[6]);
    Or(a=a[7], b=b[7], out=out[7]);
    Or(a=a[8], b=b[8], out=out[8]);
    Or(a=a[9], b=b[9], out=out[9]);
    Or(a=a[10], b=b[10], out=out[10]);
    Or(a=a[11], b=b[11], out=out[11]);
    Or(a=a[12], b=b[12], out=out[12]);
    Or(a=a[13], b=b[13], out=out[13]);
    Or(a=a[14], b=b[14], out=out[14]);
    Or(a=a[15], b=b[15], out=out[15]);

MultiBit Multiplexor - Mux16

An n-bit multiplexor is exactly the same as the binary multiplexor, except that the two inputs are each n-bit wide, the selector is a single digit. If Sel = 0, then for i=0...15, out[i] = a[i] else for i=0...15, out[i]=b[i].

CHIP Mux16 {
    IN a[16], b[16];
    OUT out[16];

    Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
    Mux(a=a[1], b=b[1], sel=sel, out=out[1]);
    Mux(a=a[2], b=b[2], sel=sel, out=out[2]);
    Mux(a=a[3], b=b[3], sel=sel, out=out[3]);
    Mux(a=a[4], b=b[4], sel=sel, out=out[4]);
    Mux(a=a[5], b=b[5], sel=sel, out=out[5]);
    Mux(a=a[6], b=b[6], sel=sel, out=out[6]);
    Mux(a=a[7], b=b[7], sel=sel, out=out[7]);
    Mux(a=a[8], b=b[8], sel=sel, out=out[8]);
    Mux(a=a[9], b=b[9], sel=sel, out=out[9]);
    Mux(a=a[10], b=b[10], sel=sel, out=out[10]);
    Mux(a=a[11], b=b[11], sel=sel, out=out[11]);
    Mux(a=a[12], b=b[12], sel=sel, out=out[12]);
    Mux(a=a[13], b=b[13], sel=sel, out=out[13]);
    Mux(a=a[14], b=b[14], sel=sel, out=out[14]);
    Mux(a=a[15], b=b[15], sel=sel, out=out[15]);